This session will detail best practices for architecting, building, operating and managing an Analytics Data Lake platform. Key topics will include: 

1) Defining next-generation Data Lake architectures. The defacto standard has been commodity DAS servers with HDFS, but there are now multiple solutions aimed at separating compute and storage, virtualizing or containerizing Hadoop applications, and utilizing Hadoop compatible or embedded HDFS filesystems. This portion will explore the options available, and the pros and cons of each. 

2) Data Ingest. There are many ways to load data into a Data Lake, including standardized Apache tools (Sqoop, Flume, Kafka, Storm, Spark, NiFi), standard file and object protocols (SFTP, NFS, Rest, WebHDFS), and proprietary tools (egZaloni Bedrock, DataTorrent). This section will explore these options in the context of best fit to workflows; it will also look at key gaps and challenges, particularly in the areas of data formats and integration with metadata/cataloging tools. 

3) Metadata & Cataloguing. One of the biggest inhibitors of successful Data Lake deployments is Data Governance, particularly in the areas of indexing, cataloguing and metadata management. It is nearly impossible to run analytics on top of a Data Lake and get meaningful & timely results without solving these problems. This portion will explore both emerging open standards (Apache Atlas, HCatalog) and proprietary tools (Cloudera Navigator, Zaloni Bedrock/Mica, Informatica Metadata Manager), and balance the pros, cons and gaps of each. 

4) Security & Access Controls. Solving these challenges are key for adoption in regulatory driven industries like Healthcare & Financial Services. There are multiple Apache projects and proprietary tools to address this, but the challenge is making security and access controls consistent across the entire application and infrastructure stack, and over the data lifecycle, and being able to audit this in the face of legal challenges. This portion will explore available options and best practices. 

5) Provisioning & Workflow Management. The real promise of the Data Lake is integrating Analytics workflows and tools on converged infrastructure-with shared data-and build “As A Service” oriented architectures that are oriented towards self-service data exploration and Analytics for end users. This is an emerging and immature area, but this session will explore some potential concepts, tools and options to achieve this. 

This will be a moderately technical session, with the above topics being illustrated by real world examples. Attendees should have basic familiarity with Hadoop and the associated Apache projects.