This session will be a detailed recount of the design, implementation, and launch of the next-generation Shutterstock Data Platform, with strong emphasis on conveying clear, understandable learnings that can be transferred to your own organizations and projects. This platform was architected around the prevailing use of Kafka as a highly-scalable central data hub for shipping data across your organization in batch or streaming fashion. It also relies heavily on Avro as a serialization format and a global schema registry to provide structure that greatly improves quality and usability of our data sets, while also allowing the flexibility to evolve schemas and maintain backwards compatibility.

As a company, Shutterstock has always focused heavily on leveraging open source technologies in developing its products and infrastructure, and open source has been a driving force in big data more so than almost any other software sub-sector. With this plethora of constantly evolving data technologies, it can be a daunting task to select the right tool for your problem. We will discuss our approach for choosing specific existing technologies and when we made decisions to invest time in home-grown components and solutions.

We will cover advantages and the engineering process of developing language-agnostic APIs for publishing to and consuming from the data platform. These APIs can power some very interesting streaming analytics solutions that are easily accessible to teams across our engineering organization.

We will also discuss some of the massive advantages a global schema for your data provides for downstream ETL and data analytics. ETL into Hadoop and creation and maintenance of Hive databases and tables becomes much more reliable and easily automated with historically compatible schemas. To complement this schema-based approach, we will cover results of performance testing various file formats and compression schemes in Hadoop and Hive, the massive performance benefits you can gain in analytical workloads by leveraging highly optimized columnar file formats such as ORC and Parquet, and how you can use good old fashioned Hive as a tool for easily and efficiently converting exiting datasets into these formats.

Finally, we will cover lessons learned in launching this platform across our organization, future improvements and further design, and the need for data engineers to understand and speak the languages of data scientists and web, infrastructure, and network engineers.